Exploring Massive Incomplete Lineage Sorting in Arctoids (Laurasiatheria, Carnivora).
نویسندگان
چکیده
Freed from the competition of large raptors, Paleocene carnivores could expand their newly acquired habitats in search of prey. Such changing conditions might have led to their successful distribution and rapid radiation. Today, molecular evolutionary biologists are faced, however, with the consequences of such accelerated adaptive radiations, because they led to sequential speciation more rapidly than phylogenetic markers could be fixed. The repercussions being that current genealogies based on such markers are incongruent with species trees.Our aim was to explore such conflicting phylogenetic zones of evolution during the early arctoid radiation, especially to distinguish diagnostic from misleading phylogenetic signals, and to examine other carnivore-related speciation events. We applied a combination of high-throughput computational strategies to screen carnivore and related genomes in silico for randomly inserted retroposed elements that we then used to identify inconsistent phylogenetic patterns in the Arctoidea group, which is well known for phylogenetic discordances.Our combined retrophylogenomic and in vitro wet lab approach detected hundreds of carnivore-specific insertions, many of them confirming well-established splits or identifying and solving conflicting species distributions. Our systematic genome-wide screens for Long INterspersed Elements detected homoplasy-free markers with insertion-specific truncation points that we used to distinguish phylogenetically informative markers from conflicting signals. The results were independently confirmed by phylogenetic diagnostic Short INterspersed Elements. As statistical analysis ruled out ancestral hybridization, these doubly verified but still conflicting patterns were statistically determined to be genomic remnants from a time of ancestral incomplete lineage sorting that especially accompanied large parts of Arctoidea evolution.
منابع مشابه
Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions.
Despite the recent large-scale efforts dedicated to comprehensive phylogenetic analyses using mitochondrial and nuclear DNA sequences, several relationships among mammalian orders remain controversial. Here, we present an extensive application of retroposon (L1) insertion analysis to the phylogenetic relationships among almost all mammalian orders. In addition to demonstrating the validity of G...
متن کاملA Genomic Approach to Examine the Complex Evolution of Laurasiatherian Mammals
Recent phylogenomic studies have failed to conclusively resolve certain branches of the placental mammalian tree, despite the evolutionary analysis of genomic data from 32 species. Previous analyses of single genes and retroposon insertion data yielded support for different phylogenetic scenarios for the most basal divergences. The results indicated that some mammalian divergences were best int...
متن کاملPhylogenomic Resolution of the Phylogeny of Laurasiatherian Mammals: Exploring Phylogenetic Signals within Coding and Noncoding Sequences
The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are considered as a gene) (19,055,07...
متن کاملPhylogenomic Analysis Resolves the Interordinal Relationships and Rapid Diversification of the Laurasiatherian Mammals
Although great progress has been made in resolving the relationships of placental mammals, the position of several clades in Laurasiatheria remain controversial. In this study, we performed a phylogenetic analysis of 97 orthologs (46,152 bp) for 15 taxa, representing all laurasiatherian orders. Additionally, phylogenetic trees of laurasiatherian mammals with draft genome sequences were reconstr...
متن کاملCorrection for Song et al., Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model.
The reconstruction of the Tree of Life has relied almost entirely on concatenation methods, which do not accommodate gene tree heterogeneity, a property that simulations and theory have identified as a likely cause of incongruent phylogenies. However, this incongruence has not yet been demonstrated in empirical studies. Several key relationships among eutherian mammals remain controversial and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 32 12 شماره
صفحات -
تاریخ انتشار 2015